The Effect of Cold Climate upon North Atlantic Deep Water Formation in a Simple Ocean–Atmosphere Model

نویسنده

  • MICHAEL WINTON
چکیده

The sensitivity of North Atlantic Deep Water formation to variations in mean surface temperature is explored with a meridional-vertical plane ocean model coupled to an energy balance atmosphere. It is found that North Atlantic Deep Water formation is favored by a warm climate, while cold climates are more likely to produce Southern Ocean deep water or deep-decoupling oscillations (when the Southern sinking region is halocline covered). This behavior is traced to a cooling-induced convective instability near the North Atlantic sinking region, that is, to unstable horizontal spreading of a halocline that stratifies part of the region. Under the convective instability it is found that climate cooling is generally equivalent to increased freshwater forcing. This is because in a cold climate, high-latitude water masses approach the temperature of maximum density and the convectiondriving, upward thermal buoyancy flux induced by surface cooling becomes insufficient to overcome the stratifying effect of surface freshening (a downward buoyancy flux). An extensive halocline is then formed and this halocline interferes with the heat loss necessary for the steady production of North Atlantic Deep Water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

North Atlantic Deep Water collapse triggered by a Southern Ocean meltwater pulse in a glacial climate state

[1] It is generally accepted that surface freshwater anomalies in the Southern Ocean drive increases in North Atlantic Deep Water (NADW) formation via a bipolar density see-saw. We find that a Southern Ocean freshwater pulse of comparable magnitude to meltwater pulse 1A, shuts down, instead of strengthens, NADW in a glacial climate simulation. Unlike the modern-day simulation, the glacial exper...

متن کامل

Response of the thermohaline circulation to cold climates

[1] A coupled atmosphere-ocean-sea ice-land surface-ice sheet model of intermediate complexity, the so-called McGill Paleoclimate Model, is employed to study the response of the thermohaline circulation (THC) to various global climate coolings, which are realized by increasing the present-day planetary emissivity to various values. Generally, it is found that the response of the THC to global c...

متن کامل

Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models

The responses of North Pacific intermediate and deep water ventilation and ocean biogeochemical properties to northern North Atlantic glacial freshwater perturbations are evaluated with a coupled atmosphere–ocean general circulation model MIROC and an earth system model of intermediate complexity LOVECLIM. When the Atlantic meridional overturning circulation (AMOC) is weakened as a result of th...

متن کامل

Forcing of the deep ocean circulation in simulations of the Last Glacial Maximum

[1] From the interpretation of different proxy data it is widely believed that the North Atlantic thermohaline circulation during the maximum of the last ice age !21,000 years ago was considerably weaker than today. Recent equilibrium simulations with a coupled ocean-atmosphere-sea ice model successfully simulated a reduction in North Atlantic Deep Water (NADW) formation consistent with reconst...

متن کامل

Effect of global ocean temperature change on deep ocean ventilation

[1] A growing number of paleoceanographic observations suggest that the ocean’s deep ventilation is stronger in warm climates than in cold climates. Here we use a general ocean circulation model to test the hypothesis that this relation is due to the reduced sensitivity of seawater density to temperature at low mean temperature; that is, at lower temperatures the surface cooling is not as effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997